Abstract

The diversity of aerobic anoxygenic phototrophic (AAP) bacteria has been examined in marine habitats, but the types of AAP bacteria in estuarine waters and distribution of ecotypes in any environment are not well known. The goal of this study was to determine the diversity of AAP bacteria in the Delaware estuary and to examine the distribution of select ecotypes using quantitative PCR (qPCR) assays for the pufM gene, which encodes a protein in the light reaction center of AAP bacteria. In PCR libraries from the Delaware River, pufM genes similar to those from Beta- (Rhodoferax-like) or Gammaproteobacteria comprised at least 50% of the clones, but the expressed pufM genes from the river were not dominated by these two groups in August 2002 (less than 31% of clones). In four transects, qPCR data indicated that the gammaproteobacterial type of pufM was abundant only near the mouth of the bay whereas Rhodoferax-like AAP bacteria were restricted to waters with a salinity of <5. In contrast, a Rhodobacter-like pufM gene was ubiquitous, but its distribution along the salinity gradient varied with the season. High fractions (12 to 24%) of all three pufM types were associated with particles. The data suggest that different groups of AAP bacteria are controlled by different environmental factors, which may explain current difficulties in predicting the distribution of total AAP bacteria in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call