Abstract

The prisoner's dilemma (PD) game is a simple model for understanding cooperative patterns in complex systems. Here, we study a PD game problem in scale-free networks containing hierarchically organized modules and controllable shortcuts connecting separated hubs. We find that cooperator clusters exhibit a percolation transition in the parameter space (p,b), where p is the occupation probability of shortcuts and b is the temptation payoff in the PD game. The cluster size distribution follows a power law at the transition point. Such a critical behavior, resulting from the combined effect of stochastic processes in the PD game and the heterogeneity of complex network structure, illustrates diversities arising in social relationships and in forming cooperator groups in real-world systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.