Abstract
Mu opioid receptors play an important role in mediating the actions of a class of opioids including morphine and heroin. Binding and pharmacological studies have proposed several mu opioid receptor subtypes: mu(1), mu(2), and morphine-6beta-glucuronide (M6G). The cloning of a mu opioid receptor, MOR-1, has provided an invaluable tool to explore pharmacological and physiological functions of mu opioid receptors at the molecular level. However, only one mu opioid receptor (Oprm) gene has been isolated. Alternative pre-mRNA splicing has been proposed as a molecular explanation for the existence of pharmacologically identified subtypes. In recent years, we have extensively investigated alternative splicing of the Oprm gene, particularly of the mouse Oprm gene. So far we have identified 25 splice variants from the mouse Oprm gene, which are controlled by two diverse promoters, eight splice variants from the rat Oprm gene, and 11 splice variants from the human Oprm gene. Diversity and complexity of the Oprm gene was further demonstrated by functional differences in agonist-induced G protein activation, adenylyl cyclase activity, and receptor internalization among carboxyl terminal variants. This review summarizes these recent results and provides a new perspective on understanding and exploring complex opioid actions in animals and humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.