Abstract
The degree to which small natural dams affect the native bacterial nitrogen cycling community was explored by molecular methods. The identities and relative abundances of ammonia oxidizing bacteria in the sediment surrounding an artificial dam both at the surface and in the hyporheic zone were characterized. Analyses were performed using tRFLP of the conserved amoA gene using a semi-nested degenerate PCR approach. Additionally, an amoA gene library was constructed to characterize the most dominant sediment genotypes. The results of the tRFLP analyses showed clear differences between the upstream and downstream communities at different depths in the sediment column. Non-metric multidimensional scaling ordination of the tRFLP data set produced a stable one-dimensional solution with significant correlations to oxygen, pH, nitrate, and dissolved organic nitrogen levels. The sample corresponding to the hyporheic zone downstream of the dam showed 28–50% higher amoA richness and higher diversity than the other samples. All gene fragments sequenced from the samples grouped with sequences of the Nitrosospira type. Ordination of 16S rDNA tRFLP data revealed a two dimensional data structure, one axis of which had similar chemical correlation characteristics as the amoA model axis. Taken together, the results from this study suggest that the presence of the dam creates physical and chemical heterogeneity that may foster genetic diversity and community changes amongst ammonia oxidizing bacteria.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.