Abstract

Marine sponge-associated microorganisms have proven to be a very promising source of biologically active and pharmaceutically important natural products. In this study, we investigated the diversity and antibacterial potential of bacteria from 49 sponge species isolated from the Beibu Gulf, South China Sea, belonging to 16 genera and several unidentified taxa. Using a variety of selective media, 363 strains with different morphologies were identified to six bacterial taxa, including Proteobacteria (α-subgroup 85 and γ-subgroup 59), Actinobacteria (123), Firmicutes (90), Bacteroidetes (5) and Brevundimonas (1). Media ISP2 and R2A were the most effective for isolating Actinobacteria. One hundred and twenty-three actinobacterial strains clustered into 21 genera identified by 16S rDNA gene sequencing, most of which were from the genus Microbacterium, followed by Pseudonocardia, Streptomyces, Kocuria, Aeromicrobium, Brachybacterium and Nocardiopsis, constituted 82% of total actinobacterial isolates. By using the minimal medium, 92 actinobacterial isolates showed antimicrobial activities, and 51 strains displayed moderate to strong antimicrobial activity that inhibited the growth of more than half of the bacteria tested in this study. Functional genes related to secondary metabolites were screened, revealing that 10% (12/123) of actinobacterial isolates contained PKS-KS genes, 18% (22/123) harbored NRPS-A genes and 6% (7/123) had hybrid PKS-NRPS gene clusters. The sponges Haliclona sp., Callyspongia sp. and Desmacella sp., belonging to class Demonspongiae, and Leucaltis sp. from the class Calcarea, were dominant hosts, harboring the most diverse actinobacterial genera with stronger antimicrobial activities and more diverse PKS/NRPS genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.