Abstract
Unlike mammals, where the males produce huge quantities of tiny spermatozoa, insects, and Drosophila in particular, exhibit a wide range of reproductive strategies. Sperm gigantism in Drosophila deviates from the rules that normally govern anisogamy, i.e. differences in the size and quantity of male and female gametes. Sperm gigantism has driven anatomical, physiological and cytological adaptations that affect the correlated evolution of the male and female reproductive systems, and has led to the evolution of a new structure, the roller, located between the testis and the seminal vesicle, and to sperm coiling to form pellets. The diversification of sperm strategy is investigated in the light of sexual selection processes that occur in the female genital tract after copulation. These processes, which bias paternity, result from interactions either between spermatozoa from different males, or between the spermatozoa and the environment within the female reproductive tract. In Drosophila, increased sperm size does not confer any reproductive advantage on the male. The evolution of sperm gigantism does not seem to be attributable to competition between spermatozoa from different males, as has been shown to occur in some vertebrate species. Alternative mechanisms, such as interactions between spermatozoa and the female reproductive system, are therefore currently viewed as being more likely explanations. In particular, the impact of sperm size on female reproductive physiology is being investigated to find out whether having large spermatozoa increases the likelihood of male reproductive success. Correlated adaptations of the spermatozoa and female storage organs also seem to be a major factor in determining sperm success, and their role in male-female conflicts is discussed briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.