Abstract
Traditional information retrieval models do not necessarily provide users with optimal search experience because the top ranked documents may contain excessively redundant information. Therefore, satisfying search results should be not only relevant to the query but also diversified to cover different subtopics of the query. In this paper, the authors propose a novel pattern-based framework to diversify search results, where each pattern is a set of semantically related terms covering the same subtopic. They first apply a maximal frequent pattern mining algorithm to extract the patterns from retrieval results of the query. The authors then propose to model a subtopic with either a single pattern or a group of similar patterns. A profile-based clustering method is adapted to group similar patterns based on their context information. The search results are then diversified using the extracted subtopics. Experimental results show that the proposed pattern-based methods are effective to diversify the search results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Semantic Web and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.