Abstract

Query auto-completion assists web search users in formulating queries with a few keystrokes, helping them to avoid spelling mistakes and to produce clear query expressions, and so on. Previous work on query auto-completion mainly centers around returning a list of completions to users, aiming to push queries that are most likely intended by the user to the top positions but ignoring the redundancy among the query candidates in the list. Thus, semantically related queries matching the input prefix are often returned together. This may push valuable suggestions out of the list, given that only a limited number of candidates can be shown to the user, which may result in a less than optimal search experience. In this article, we consider the task of diversifying query auto-completion, which aims to return the correct query completions early in a ranked list of candidate completions and at the same time reduce the redundancy among query auto-completion candidates. We develop a greedy query selection approach that predicts query completions based on the current search popularity of candidate completions and on the aspects of previous queries in the same search session. The popularity of completion candidates at query time can be directly aggregated from query logs. However, query aspects are implicitly expressed by previous clicked documents in the search context. To determine the query aspect, we categorize clicked documents of a query using a hierarchy based on the open directory project. Bayesian probabilistic matrix factorization is applied to derive the distribution of queries over all aspects. We quantify the improvement of our greedy query selection model against a state-of-the-art baseline using two large-scale, real-world query logs and show that it beats the baseline in terms of well-known metrics used in query auto-completion and diversification. In addition, we conduct a side-by-side experiment to verify the effectiveness of our proposal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.