Abstract

The current review discusses the different synthetic pathways for one of the most important and interesting heterocyclic ring systems, 1,4-dihydropyridine. This cyclic system depicts diverse pharmacological action on several receptors, channels, and enzymes. Dihydropyridine moiety plays an important role in several calcium-channel blockers. Moreover, it has been exploited for the treatment of a variety of cardiovascular diseases due to its potential antihypertensive, anti-angina, vasodilator, and cardiac depressant activities. Furthermore, it also shows antibacterial, anticancer, anti-leishmanial, anticoagulant, anticonvulsant, anti-tubercular, antioxidant, antiulcer, and neuroprotective properties. Several reports have demonstrated dihydropyridine derivatives as a potentiator of cystic fibrosis transmembrane conductance regulator protein, potent antimalarial agent and HIV-1 protease inhibitor. Herein, we have briefly reviewed different novel chemistry and the synthesis of 1,4-dihydropyridine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call