Abstract

Undersampling is a widely adopted method to deal with imbalance pattern classification problems. Current methods mainly depend on either random resampling on the majority class or resampling at the decision boundary. Random-based undersampling fails to take into consideration informative samples in the data while resampling at the decision boundary is sensitive to class overlapping. Both techniques ignore the distribution information of the training dataset. In this paper, we propose a diversified sensitivity-based undersampling method. Samples of the majority class are clustered to capture the distribution information and enhance the diversity of the resampling. A stochastic sensitivity measure is applied to select samples from both clusters of the majority class and the minority class. By iteratively clustering and sampling, a balanced set of samples yielding high classifier sensitivity is selected. The proposed method yields a good generalization capability for 14 UCI datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.