Abstract

Agricultural intensification has increased crop productivity but simplified production and reduced cropping system diversity. In recent decades, the intensified wheat–maize rotation in the North China Plain has sharply decreased the groundwater table, with associated environmental and biodiversity issues. Understanding whether increasing cropping system diversity stabilizes productivity, improves resilience, and reduces adverse environmental impacts is critical. This study quantified the water requirements of nine staple crops from 1960 to 2020, established 15 alternative crop rotations, and evaluated the resilience of each rotation in the Cangzhou area, a typical groundwater deletion funnel area. The results showed that reducing cropping density (harvests per year) from 2 to 1.5 decreased the average annual water requirement and irrigation demand by 14 % and 33 %, respectively. Summer soybean alternated with maize and rotated with wheat did not reduce groundwater use but increased profitability and protein production. Spring mung bean–summer millet-based multi-rotations had higher precipitation coupling degrees (8 % in wet years, 17 % in normal years, and 56 % in dry years) and profitability (1.1–2.4 times) than the wheat–maize rotation. The spring potato–summer millet rotation in one year had the greatest profitability, the highest equivalent yield to wheat, and the highest water use efficiency (WUE), while spring maize rotated with winter wheat–summer soybean performed best for protein content, energy output, and WUEs. This study identified 11 alternative rotations with a higher comprehensive evaluation index than the conventional wheat–maize rotation based on entropy-TOPSIS considering 12 indicators. Spring mungbean is not suitable for inclusion in the crop rotation when solely cultivated in one year due to mismatched rainfall. Beyond wheat and maize, soybean, millet, and potato are promising crops for innovative multi-year multi-crop rotations to enhance crop diversification, maximize system outputs, and minimize groundwater and energy depletion. This study’s analysis could be extended to develop robust and diverse crop rotations with multiple co-benefits in other water-stressed agricultural regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call