Abstract

Here, we propose a novel method for the synthesis of extremely uniform, diversely doped silicon nanotube heterostructures. The method, comprising a simple two-step synthesis, exploits the use of a Ge nanowire sacrificial core upon which a multidoping axial pattern can be easily obtained, that is enclosed in an intrinsic Si shell. The Ge-Si core-shell structure is then heated to 750 °C, allowing the migration of dopant elements from the Ge core directly into the Si shell. Removal of the Ge core, via either wet or dry etch, does not impair the crystallinity of the Si shell nor its electrical characteristics, allowing for the formation of a multidoped axially patterned, conformal, and uniform Si nanotube. The precise dopant patterning allows for the extension of Si nanotube applications, which were unattainable because of the inability to precisely control the parameters and uniformity of the nanotubes while doping the structure simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.