Abstract

Wheat productivity has been significantly improved worldwide through the incorporation of novel genes from various gene pools, not least from wild relatives of wheat, into the commonly cultivated bread and durum wheat. Here, we present and summarize results obtained from a diverse set of wheat-alien introgression lines with mainly introgressions of rye, but also of Leymus spp. and Thinopyrum junceiforme into bread-wheat (Triticum aestivum L.). From this material, lines carrying 2RL were found with good agronomic performance and multiple resistance not least towards several races of powdery mildew. A novel resistance gene, one of few showing resistance towards all today identified stem rust races, designated Sr59, was also found originating from 2RL. Lines with multiple introgressions from 4R, 5R, and 6R were found resistant towards the majority of the stripe rust races known today. Due to lack of agricultural adaptation in these lines, transfer of useful genes into more adapted wheat material is a necessity, work which is also in progress through crosses with the CSph1b mutant, to be able to only transfer small chromosome segments that carry the target gene. Furthermore, resistance towards Russian wheat aphid was found in lines having a substitution of 1R (1D) and translocations of 3DL.3RS and 5AL.5RS. The rye chromosomes 1R, 2R, and 6R were found responsible for resistance towards the Syrian Hessian fly. High levels of especially zinc was found in several lines obtained from crosses with Leymus racemosus and Leymus mollis, while also some lines with 1R, 2R, or 5R showed increased levels of minerals and in particular of iron and zinc. Moreover, lines with 1R, 2R, 3R, and Leymus spp. introgressions were also found to have a combination of high iron and zinc and low cadmium concentrations. High variation was found both in grain protein concentration and gluten strength, measured as %UPP, within the lines, indicating large variation in bread-making quality. Thus, our study emphasizes the impact that wheat-alien introgression lines can contribute to current wheat lines and shows large opportunities both to improve production, resistance, and quality. To obtain such improvements, novel plant breeding tools, as discussed in this paper, opens unique opportunities, to transfer suitable genes into the modern and adapted wheat cultivars.

Highlights

  • Wheat is one of the three major crops of importance for food security worldwide, the other two being rice and maize (FAO, 2016)

  • Novel plant breeding methodologies have to be developed in order to most beneficially use available genetic resources and smart and rapid plant development to produce the needed wheat materials in time to cope with needs and challenges

  • To adequately meet the global food demand required by 2050, there is a need to increase wheat yield annually. These can be achieved through the two unique opportunities; plant breeding and improved agronomic practices

Read more

Summary

Introduction

Wheat is one of the three major crops of importance for food security worldwide, the other two being rice and maize (FAO, 2016). The population growth predicted to be more than 9 billion people worldwide in 2050, result in additional demand on food production, simultaneously bringing an increasing competition for arable land for food production (FAO, 2016). To meet these challenges, novel wheat cultivars are urgently needed, adapted to contribute high yield under sustainable and demanding cultivation conditions (Shiferaw et al, 2013). Novel wheat cultivars are urgently needed, adapted to contribute high yield under sustainable and demanding cultivation conditions (Shiferaw et al, 2013) For this purpose, novel plant breeding methodologies have to be developed in order to most beneficially use available genetic resources and smart and rapid plant development to produce the needed wheat materials in time to cope with needs and challenges

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call