Abstract

Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 (PLA1) and A2 (PLA2) activity, which are common in host cell-targeting bacterial toxins and the venoms of certain insects and reptiles1,2. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors (Tle). Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D (PLD)3, is a member of the Tle superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). While prior studies have specifically implicated PldA and the H2-T6SS in pathogenesis3–5, we uncovered a specific role for the effector and its secretory machinery in intra- and inter-species bacterial interactions. Furthermore we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine (PE), the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the ongoing evolution of pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call