Abstract

Camelina sativa L. is an oilseed crop used as a potential low-cost biofuel resource. Despite the economic and agricultural benefits of this crop, studies demonstrating the physiological and genetic response of camelina to changing environmental conditions are limited. In this study, three stress-responsive glycine-rich RNA-binding proteins (GRPs) in camelina—named CsGRP7a, CsGRP7b, and CsGRP7c—were isolated, and their functional roles in stress responses were characterized. The three CsGRP7 genes had similar nucleotide and deduced amino acid sequences, and contained an N-terminal RNA-recognition motif and a C-terminal glycine-rich region. The CsGRP7 genes were ubiquitously expressed in all plant tissues, and CsGRP7 proteins were localized to both the cytoplasm and the nucleus. The expression of CsGRP7 genes was markedly upregulated by cold stress, whereas their expression was only slightly affected by salt or dehydration stress. Analysis of CsGRP7a-expressing transgenic Arabidopsis thaliana and camelina plants revealed that CsGRP7a plays a positive role in cold stress tolerance, but a negative role in salt or drought stress tolerance. All three CsGRP7s harbored RNA chaperone activity. Collectively, these data indicate that the stress-responsive CsGRP7s harbor RNA chaperone activity and play different roles in the plant response to abiotic stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call