Abstract

This review highlights recent findings of different amplitude ranges, roles, and modulations of A-type K+ currents (IA) in excitatory (GAD67-GFP-) and inhibitory (GAD67-GFP+) interneurons in mouse spinal cord pain pathways. Endogenous neuropeptides, such as TAFA4, oxytocin, and dynorphin in particular, have been reported to modulate IA in these pain pathways, but only TAFA4 has been shown to fully reverse the opposing modulations that occur selectively in LIIo GAD67-GFP- and LIIi GAD67-GFP+ interneurons following bothneuropathic and inflammatory pain. If, as hypothesized here, Kv4 subunits underlie IA in both GAD67-GFP- and GAD67-GFP+ interneurons, then IA diversity in spinal cord pain pathways may depend on the interneuron-subtype-selective expression of Kv4 auxiliary subunits with functionally different N-terminal variants. Thus, IA emerges as a good candidate for explaining the mechanisms underlying injury-induced mechanical hypersensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.