Abstract
Understanding the mechanisms of combating phenolic stress in wine is important for optimization of starter culture for improved competitiveness. The cellular membrane adaptations, as well as metabolic transformations driven by malo-lactic starter cultures, i.e. Lactobacillus plantarum (Lp2565) and Oenococcus oeni (Oo2219) with response to wine phenolic compounds were studied. The morphological changes based on scanning electron microscopy indicated the higher tolerance of Oo2219 to phenolic stress than Lp2565. Further, the fatty acid profiling suggested that the membrane fluidization in Lp2565 was attributed to higher unsaturated fatty acids whereas the rigidification in Oo2219 was by incorporation of saturated fatty acid in the membrane. The metabolic transformation of phenolic compounds suggested that Lp2565 has more versatile phenolic detoxification enzyme systems compared to Oo2219. The metabolic conversions resulted in degradation of phenolic compounds into volatile phenols, aromatic alcohol, and phenyl propionic acids, thus indicating the possible involvement of oxidoreductases, decarboxylases, and demethylases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.