Abstract

Phosphorus (P) is an essential element for plant growth often limiting agroecosystems. To identify genetic determinants of performance under variable phosphate (Pi) supply, we conducted genome-wide association studies on five highly predictive Pi starvation response traits in 200 Arabidopsis (Arabidopsis thaliana) accessions. Pi concentration in Pi-limited organs had the strongest, and primary root length had the weakest genetic component. Of 70 trait-associated candidate genes, 17 responded to Pi withdrawal. The PHOSPHATE TRANSPORTER1 gene cluster on chromosome 5 comprises PHT1;1, PHT1;2, and PHT1;3 with known impact on P status. A second locus featured uncharacterized endomembrane-associated auxin efflux carrier encoding PIN-LIKES7 (PILS7) which was more strongly suppressed in Pi-limited roots of Pi-starvation sensitive accessions. In the Col-0 background, Pi uptake and organ growth were impaired in both Pi-limited pht1;1 and two pils7 T-DNA insertion mutants, while Pi -limited pht1;2 had higher biomass and pht1;3 was indistinguishable from wild-type. Copy number variation at the PHT1 locus with loss of the PHT1;3 gene and smaller scale deletions in PHT1;1 and PHT1;2 predicted to alter both protein structure and function suggest diversification of PHT1 is a key driver for adaptation to P limitation. Haplogroup analysis revealed a phosphorylation site in the protein encoded by the PILS7 allele from stress-sensitive accessions as well as additional auxin-responsive elements in the promoter of the "stress tolerant" allele. The former allele's inability to complement the pils7-1 mutant in the Col-0 background implies the presence of a kinase signaling loop controlling PILS7 activity in accessions from P-rich environments, while survival in P-poor environments requires fine-tuning of stress-responsive root auxin signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call