Abstract

At the heart of bacterial cell division is a dynamic ring-like structure of polymers of the tubulin homologue FtsZ. This ring forms a scaffold for assembly of at least ten additional proteins at midcell, the majority of which are likely to be involved in remodeling the peptidoglycan cell wall at the division site. Together with FtsZ, these proteins are thought to form a cell division complex, or divisome. In Escherichia coli, the components of the divisome are recruited to midcell according to a strikingly linear hierarchy that predicts a step-wise assembly pathway. However, recent studies have revealed unexpected complexity in the assembly steps, indicating that the apparent linearity does not necessarily reflect a temporal order. The signals used to recruit cell division proteins to midcell are diverse and include regulated self-assembly, protein-protein interactions, and the recognition of specific septal peptidoglycan substrates. There is also evidence for a complex web of interactions among these proteins and at least one distinct subcomplex of cell division proteins has been defined, which is conserved among E. coli, Bacillus subtilis and Streptococcus pneumoniae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.