Abstract

O-GlcNAcylation is characterised by the addition of N-acetylglucosamine to various proteins by O-GlcNAc transferase (OGT) and serves in sensing intracellular nutrients by modulating various cellular processes. Although it has been speculated that O-GlcNAcylation is associated with glucose metabolism, its exact role in whole body glucose metabolism has not been fully elucidated. Here, we investigated whether loss of O-GlcNAcylation globally and in specific organs affected glucose metabolism in mammals under physiological conditions. Tamoxifen-inducible global Ogt-knockout (Ogt-KO) mice were generated by crossbreeding Ogt-flox mice with R26-Cre-ERT2 mice. Liver, skeletal muscle, adipose tissue and pancreatic beta cell-specific Ogt-KO mice were generated by crossbreeding Ogt-flox mice with Alb-Cre, Mlc1f-Cre, Adipoq-Cre and Pdx1 PB-CreER™ mice, respectively. Glucose metabolism was evaluated by i.p. glucose and insulin tolerance tests. Tamoxifen-inducible global Ogt-KO mice exhibited a lethal phenotype from 4weeks post injection, suggesting that O-GlcNAcylation is essential for survival in adult mice. Tissue-specific Ogt deletion from insulin-sensitive organs, including liver, skeletal muscle and adipose tissue, had little impact on glucose metabolism under physiological conditions. However, pancreatic beta cell-specific Ogt-KO mice displayed transient hypoglycaemia (Ogt-flox 5.46±0.41 vs Ogt-βKO 3.88±0.26mmol/l) associated with about twofold higher insulin secretion and accelerated adiposity, followed by subsequent hyperglycaemia (Ogt-flox 6.34±0.32 vs Ogt-βKO 26.4±2.37mmol/l) with insulin depletion accompanied by beta cell apoptosis. These findings suggest that O-GlcNAcylation has little effect on glucose metabolism in insulin-sensitive tissues but plays a crucial role in pancreatic beta cell function and survival under physiological conditions. Our results provide novel insight into O-GlcNAc biology and physiology in glucose metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.