Abstract

Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.

Highlights

  • Sphingolipids belong to a class of lipids defined by their amino-alcohol backbone

  • We have become increasingly aware of the importance of lipids, and sphingolipids in particular, for the processes of infection with and defense against pathogenic bacteria

  • Bacterial invasion or uptake are often mediated by bacterial attachment to glycosphingolipids or regulated by the increase in plasma membrane ceramide

Read more

Summary

Introduction

Sphingolipids belong to a class of lipids defined by their amino-alcohol backbone. They were considered merely to be ubiquitous components of the eukaryotic cell membrane, shown to play a critical role in the formation of membrane microdomains called lipid rafts that are important for cell signaling (Simons and Ikonen, 1997). This review will summarize some of our current knowledge about involvement of sphingolipids in bacterial infection, starting from the interaction with pathogenic bacteria on the surface of the cell, including the uptake of bacteria, immune response, survival and propagation of intracellular bacteria, and ending with several remarks on the bactericidal effects of sphingolipids. Ceramide-enriched lipid rafts acting as binding platforms, as well as sphingolipid signaling, such as through the activation of acid sphingomyelinase (ASM) (Simonis and Schubert-Unkmeir, 2018), often mediate the entry of bacterial pathogens into host cells, which is a step important for infection and establishment of bacteria in an intracellular niche (Figure 2).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.