Abstract
The effects of global warming and anthropogenic disturbance force animals to migrate from lower to higher elevations to find suitable new habitats. As such migrations increase hypoxic stress on the animals, it is important to understand how plateau- and plain-dwelling animals respond to low-oxygen environments. We used comparative transcriptomics to explore the response of Neodon fuscus, Lasiopodomys brandtii, and Mus musculus skeletal muscle tissues to hypoxic conditions. Results indicate that these species have adopted different oxygen transport and energy metabolism strategies for dealing with a hypoxic environment. N. fuscus promotes oxygen transport by increasing hemoglobin synthesis and reduces the risk of thrombosis through cooperative regulation of genes, including Fga, Fgb, Alb, and Ttr; genes such as Acs16, Gpat4, and Ndufb7 are involved in regulating lipid synthesis, fatty acid β-oxidation, hemoglobin synthesis, and electron-linked transmission, thereby maintaining a normal energy supply in hypoxic conditions. In contrast, the oxygen-carrying capacity and angiogenesis of red blood cells in L. brandtii are promoted by genes in the CYP and COL families; this species maintains its bodily energy supply by enhancing the pentose phosphate pathway and mitochondrial fatty acid synthesis pathway. However, under hypoxia, M. musculus cannot effectively transport additional oxygen; thus, its cell cycle, proliferation, and migration are somewhat affected. Given its lack of hypoxic tolerance experience, M. musculus also shows significantly reduced oxidative phosphorylation levels under hypoxic conditions. Our results suggest that the glucose capacity of M. musculus skeletal muscle does not provide sufficient energy during hypoxia; thus, we hypothesize that it supplements its bodily energy by synthesizing ketone bodies. For the first time, we describe the energy metabolism pathways of N. fuscus and L. brandtii skeletal muscle tissues under hypoxic conditions. Our findings, therefore, improve our understanding of how vertebrates thrive in high altitude and plain habitats when faced with hypoxic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.