Abstract

<p>In the extratropical atmosphere, Rossby waves (RWs) and internal gravity waves (GWs) propagating from the troposphere mediate a coupling with the middle atmosphere by influencing the dynamics herein. In the current generation chemistry-climate models (CCMs), RW effects are well resolved while GW effects have to be parameterized. Here, we analyze orographic GW (OGW) interaction with resolved dynamics in a comprehensive CCM on the time scale of days. For this, we apply a recently developed method of strong OGW drag event composites for the three strongest northern hemisphere OGW hotspots. We show that locally-strong OGW events considerably alter the properties of resolved wave propagation into the middle atmosphere, which subsequently influences zonal winds and RW transience. Our results demonstrate that the influence of OGWs is critically dependent on the hotspot region, which underlines the OGW-resolved dynamics interaction being a two-way process.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.