Abstract

We examined the effect of whole-ecosystem nutrient enrichment on herbivory in saltmarsh creek-wall habitats in the Plum Island Estuary (Massachusetts, USA). Located between the macrophyte-dominated high marsh and adjoining mudflats, creek walls are steep vertical habitats vegetated with productive filamentous algae and associated epiphytes. Annual nitrate and phosphate loading rates were increased approximately ×10–15 in creeks mimicking short-term (2-month) and chronic (6-year) eutrophication. We assessed the diets of epifaunal invertebrates (three gastropods and one amphipod species) that potentially graze on benthic algae using natural isotope abundance data and per capita grazing rate measurements derived from 13C prelabeled algae. Substantial dietary contributions from benthic algae were observed in all consumers even though previous research has indicated most rely on Spartina detritus as the principal food resource. The amphipod Orchestia grillus and the snail Melampus bidentatus grazed benthic algae in excess of 500 μg algal C g C−1 h−1, whereas the snail Nassarius obsoletus and hydrobiid snails grazed at lower rates. Few dietary changes were detected with short-term enrichment. Algal grazing rates of N. obsoletus and M. bidentatus increased with chronic enrichment probably as a functional response to increased algal productivity. O. grillus grazed at a high rate and parasitic infection did not affect its consumption of benthic algae. The abundance and frequency of occurrence of O. grillus on creek-wall habitats increased with chronic nutrient enrichment suggesting amphipods contribute to top–down control on benthic algae and slow algal growth as nutrient enrichment occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.