Abstract

We revisit the densest binary sphere packings (DBSPs) under periodic boundary conditions and present an updated phase diagram, including newly found 12 putative densest structures over the x-α plane, where x is the relative concentration and α is the radius ratio of the small and large spheres. To efficiently explore the DBSPs, we develop an unbiased random search approach based on both the piling-up method to generate initial structures in an unbiased way and the iterative balance method to optimize the volume of a unit cell while keeping the overlap of hard spheres minimized. With those two methods, we have discovered 12 putative DBSPs and thereby the phase diagram is updated, while our results are consistent with those of a previous study [Hopkins et al., Phys. Rev. E 85, 021130 (2012)]PLEEE81539-375510.1103/PhysRevE.85.021130 with a small correction for the case of 12 or fewer spheres in the unit cell. Five of the discovered 12 DBSPs are identified in the small radius range of 0.42≤α≤0.50, where several structures are competitive to each other with respect to packing fraction. Through the exhaustive search, diverse dense packings are discovered and, accordingly, we find that packing structures achieve high packing fractions by introducing distortion and/or combining a few local dense structural units. Furthermore, we investigate the correspondence of the DBSPs with crystals based on the space group. The result shows that many structural units in real crystals, e.g., LaH_{10} and SrGe_{2-δ} being high-pressure phases, can be understood as DBSPs. The correspondence implies that the densest sphere packings can be used effectively as structural prototypes for searching complex crystal structures, especially for high-pressure phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.