Abstract

Two readily available bis(1,2,3-triazol-5-ylidene) ligand precursors [H2(COC)](PF6)2 and [H2(CHNC)](PF6)2, bridged by an ether or amine functionality, respectively, were prepared. Their coordination versatility was evaluated predominantly by reacting Rh(I) and Ir(I) metal precursors with the in situ deprotonated salt precursors or in exceptional cases, via transmetallation from silver, to obtain those complexes not accessible via the preferred one-step route. A divergence in reactivity and coordination was observed for both ligand precursors depending on the base and metal employed. The carbon–ether–carbon (COC) ligand afforded mono- and bimetallic complexes of Rh(I) and Ir(I), chelates or bridges two metal centers. Conversely, the carbon–amine–carbon (CHNC) ligand displayed a greater predisposition for rhodium binding and poor coordination ability to iridium. As a result, two unusual bimetallic Rh(I) complexes bearing two metal centers bridged by the central (deprotonated) amido functionality, along with...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.