Abstract

Streptomyces are Gram-positive bacteria that occupy diverse ecological niches including host-associations with animals and plants. Members of this genus are known for their overwhelming repertoire of natural products, which has been exploited for almost a century as a source of medicines and agrochemicals. Notwithstanding intense scientific and commercial interest in Streptomyces natural products, surprisingly little is known of the intra- and/or inter-species ecological roles played by these metabolites. In this report we describe the chemical structures, biological properties, and biosynthetic relationships between natural products produced by Streptomyces isolated from internal tissues of predatory Conus snails, collected from the Great Barrier Reef, Australia. Using chromatographic, spectroscopic and bioassays methodology, we demonstrate that Streptomyces isolated from five different Conus species produce identical chemical and antifungal profiles – comprising a suite of polycyclic tetramic acid macrolactams (PTMs). To investigate possible ecological (and evolutionary) relationships we used genome analyses to reveal a close taxonomic relationship with other sponge-derived and free-living PTM producing Streptomyces (i.e., Streptomyces albus). In-depth phylogenomic analysis of PTM biosynthetic gene clusters indicated PTM structure diversity was governed by a small repertoire of genetic elements, including discrete gene acquisition events involving dehydrogenases. Overall, our study shows a Streptomyces-Conus ecological relationship that is concomitant with specific PTM chemical profiles. We provide an evolutionary framework to explain this relationship, driven by anti-fungal properties that protect Conus snails from fungal pathogens.

Highlights

  • Polycyclic tetramic acid macrolactams (PTMs) are widespread natural products produced by members of the phyla Actinobacteria and Proteobacteria

  • Detailed morphological examinations indicated that the collected cone snail specimens belonged to three different taxonomic groups, each one belonging to a different species, namely, C. emaciatus and C. flavidus (Virgiconus group), C. miles (Rhizoconus group) and C. coronatus and C. ebraeus (Virroconus group)

  • We found that isolation of polycyclic tetramic acid macrolactams (PTMs) producing strains was tissue independent, as all strains were obtained from different organs of the snail (Supplementary Table S1)

Read more

Summary

Introduction

Polycyclic tetramic acid macrolactams (PTMs) are widespread natural products produced by members of the phyla Actinobacteria and Proteobacteria (class gammaproteobacteria). PTM-producing bacteria have been isolated from complex biological systems, such as sponges, plants and insects (Shigemori et al, 1992; Jakobi and Winkelmann, 1996; Nakayama et al, 1999; Yu et al, 2007; Blodgett et al, 2010). Was elaborated through heterologous expression of three main biosynthetic components, the iterative hybrid PKS/NRPS enzyme, phytoene desaturaselike enzyme and alcohol dehydrogenase encoded by ikaA, ikaB, and ikaC genes, respectively (Antosch et al, 2014; Zhang et al, 2014; Greunke et al, 2017). The dihydromaltophilin gene cluster is formed by an iterative hybrid PKS/NRPS, sterol desaturase-like enzyme, ferredoxin reductase, alcohol dehydrogenase and three FAD-dependent oxidoreductase like enzymes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.