Abstract
Ragweed frequently causes seasonal allergies in North America and Europe. In the United States, several related ragweed species with diverse geographical distribution cause allergic symptoms. Cross-reactivity towards related ragweed species of IgE and treatment-induced IgG4 has been demonstrated previously. However, less is known about the underlying T-cell cross-reactivity. The allergen content of ragweed extracts was determined by mass spectrometry and related to T-cell epitopes of Amb a allergens (group 1, 3, 4, 5, 8 and 11) in 20 American ragweed allergic patients determined by FluoroSpot and proliferation assays. T-cell responses to 50 frequently recognized Amb a-derived T-cell epitopes and homologous peptides from western ragweed (Amb p), giant ragweed (Amb t) and mugwort (Art v) were investigated in an additional 11 American and 14 Slovakian ragweed allergic donors. Ragweed extracts contained all known allergens and isoallergens thereof. Donor T-cell responses were diverse and directed against all Amb a 1 isoallergens and to most minor allergens investigated. Similar response patterns were seen in American and Slovakia donors. Several epitopes were cross-reactive between isoallergens and ragweed species, some even including mugwort. T-cell cross-reactivity generally correlated with allergen sequence homology. T-cell epitopes of multiple allergens/isoallergens are involved in the diverse T-cell responses in ragweed allergic individuals. T-cell lines were highly cross-reactive to epitopes of related ragweed species without any apparent geographical response bias. These data support that different ragweed species can be considered an allergen homology group with Amb a as the representative species regarding diagnosis as well as allergy immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.