Abstract
The automated diagnostic systems employing diverse and composite features for electrocardiogram (ECG) signals were analyzed and their accuracies were determined. Because of the importance of making the right decision, classification procedures classifying the ECG signals with high accuracy were investigated. The classification accuracies of multilayer perceptron neural network (MLPNN), recurrent neural network (RNN), and mixture of experts (ME) trained on composite features and modified mixture of experts (MME) trained on diverse features were compared. The inputs of these automated diagnostic systems were composed of diverse or composite features (wavelet coefficients and power levels of the power spectral density estimates obtained by the eigenvector methods) and were chosen according to the network structures. The conclusions of this study demonstrated that the MME trained on diverse features achieved accuracy rates which were higher than that of the other automated diagnostic systems trained on composite features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.