Abstract

There is a lack of depth-resolved temperature data, especially in coastal areas, which are often commonly dived by SCUBA divers. Many case studies have demonstrated that citizen science can provide high quality data, although users require more confidence in the accuracy of these data. This study examined the response time, accuracy and precision of water temperature measurement in 28 dive computers plus three underwater cameras, from 12 models. A total of 239 temperature response times (τ) were collected from 29 devices over 11 chamber dives. Mean τ by device ranged from (17 ± 6) to (341 ± 69) s, with significant between-model differences found for τ across all models. Clear differences were found in τ by pressure sensor location and material, but not by size. Two models had comparable τ to designed-for-purpose aquatic temperature loggers. 337 mean data points were collected from equilibrated temperatures in hyperbaric chamber (n = 185) and sea (n = 152) dives, compared with baseline mean temperature from Castaway CTDs over the same time period. Mean bias, defined as mean device temperature minus baseline temperature, by model ranged from (0.0 ± 0.5) to (−1.4 ± 2.1) °C and by device from (0.0 ± 0.6) to (−3.4 ± 1.0) °C. Nine of the twelve models were found to have “good” accuracy (≤0.5 °C) overall. Irrespective of model, the overall mean bias of (−0.2 ± 1.1) °C is comparable with existing commonly used coastal temperature data sets, and within global ocean observing system accuracy requirements for in situ temperature. Our research shows that the quality of temperature data in dive computers could be improved, but, with collection of appropriate metadata to allow assessment of data quality, some models of dive computers have a role in future oceanographic monitoring.

Highlights

  • The oceans have a critical role in climate change, acting as a heat sink and being responsible for the uptake of more than 90% of the excess heat in our climate system between 1971 and 2010 (Pörtner et al, 2019; Johnson and Lyman, 2020)

  • A generalised linear model (GLM) approach was used in R Studio to look for significant differences

  • Despite the inherent limitations of the existing technology, our research shows that, while there is wide between-model variation in both temperature bias and τ, there is value in data derived from devices commonly carried by SCUBA divers as a source of subsurface temperature data in coastal areas

Read more

Summary

Introduction

The oceans have a critical role in climate change, acting as a heat sink and being responsible for the uptake of more than 90% of the excess heat in our climate system between 1971 and 2010 (Pörtner et al, 2019; Johnson and Lyman, 2020). Warming ocean temperatures are intrinsically linked to sea level rise and projections show the rise accelerating because of non-linear thermal expansion. The number and severity of occurrences of extreme events linked to increased sea temperatures, such as heat waves, are expected to increase with global warming (Bindoff et al, 2019). Shifts in biodiversity have been seen in response to variations in temperature between 0.1 and 0.4 ◦C (Danovaro et al, 2020), with shallow seasonal thermoclines being important to ecosystem dynamics, horizontal and vertical distribution of fish (Aspillaga et al, 2017) and biological production (Palacios et al, 2004). Variation and oscillations in thermocline depth and temperature have been recorded during the stratification period (Bensoussan et al, 2010; Aspillaga et al, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call