Abstract

Abstract. The present study investigates the response of the high-latitude carbon cycle to changes in atmospheric greenhouse gas (GHG) concentrations in idealized climate change scenarios. To this end we use an adapted version of JSBACH – the land surface component of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) – that accounts for the organic matter stored in the permafrost-affected soils of the high northern latitudes. The model is run under different climate scenarios that assume an increase in GHG concentrations, based on the Shared Socioeconomic Pathway 5 and the Representative Concentration Pathway 8.5, which peaks in the years 2025, 2050, 2075 or 2100, respectively. The peaks are followed by a decrease in atmospheric GHGs that returns the concentrations to the levels at the beginning of the 21st century, reversing the imposed climate change. We show that the soil CO2 emissions exhibit an almost linear dependence on the global mean surface temperatures that are simulated for the different climate scenarios. Here, each degree of warming increases the fluxes by, very roughly, 50 % of their initial value, while each degree of cooling decreases them correspondingly. However, the linear dependence does not mean that the processes governing the soil CO2 emissions are fully reversible on short timescales but rather that two strongly hysteretic factors offset each other – namely the net primary productivity and the availability of formerly frozen soil organic matter. In contrast, the soil methane emissions show a less pronounced increase with rising temperatures, and they are consistently lower after the peak in the GHG concentrations than prior to it. Here, the net fluxes could even become negative, and we find that methane emissions will play only a minor role in the northern high-latitude contribution to global warming, even when considering the high global warming potential of the gas. Finally, we find that at a global mean temperature of roughly 1.75 K (±0.5 K) above pre-industrial levels the high-latitude ecosystem turns from a CO2 sink into a source of atmospheric carbon, with the net fluxes into the atmosphere increasing substantially with rising atmospheric GHG concentrations. This is very different from scenario simulations with the standard version of the MPI-ESM, in which the region continues to take up atmospheric CO2 throughout the entire 21st century, confirming that the omission of permafrost-related processes and the organic matter stored in the frozen soils leads to a fundamental misrepresentation of the carbon dynamics in the Arctic.

Highlights

  • High-latitude terrestrial ecosystems are increasingly recognized as an important factor for the global carbon cycle

  • At the beginning of the 21st century, permafrost regions (Fig. 3a) contain between 373 and 764 Gt of organic carbon (Table 1); 171 to 298 GtC of these are located within the active layer, where the organic matter is exposed to microbial decomposition, and the resulting soil CO2 emissions range between 2.4 and 4.0 GtC yr−1

  • The ecosystem flux increases substantially with rising temperatures and for the Paris Agreement long-term goal – global mean surface temperatures limited to about 1.5 K above pre-industrial levels – the simulated net fluxes increase from −0.3 to around −0.1 GtC yr−1

Read more

Summary

Introduction

High-latitude terrestrial ecosystems are increasingly recognized as an important factor for the global carbon cycle. There are large quantities of effectively inert organic matter stored within the frozen soils of the Northern Hemisphere, and a significant fraction of these could become exposed to microbial decomposition in a warmer climate. Regional soil temperatures have increased by up to 2 K, and there is a pronounced reduction in the extent of permafrost-affected areas combined with an increase in active-layer depth, which leaves large quantities of organic matter vulnerable to decomposition (Biskaborn et al, 2019; Stocker et al, 2013; Etzelmueller et al, 2011; Osterkamp, 2007; Shiklomanov et al, 2010; Frauenfeld, 2004; Wu and Zhang, 2010; Callaghan et al, 2010; Isaksen et al, 2007; Brown and Romanovsky, 2008; Romanovsky et al, 2010)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.