Abstract
We aimed to investigate abnormal time-varying functional connectivity (FC) for thalamic sub-regions in multiple sclerosis (MS) and their clinical, cognitive and MRI correlates. Eighty-nine MS patients (49 relapsing-remitting [RR] MS; 40 progressive [P] MS) and 53 matched healthy controls underwent neurological, neuropsychological and resting state fMRI assessment. Time-varying connectivity (TVC) was quantified using sliding-window seed-voxel correlation analysis. Standard deviation of FC across windows was taken as measure of TVC, while mean connectivity across windows expressed static FC. MS patients showed reduced TVC vs controls between most of thalamic sub-regions and fronto-temporo-occipital regions. At the same time, they showed increased static FC between all thalamic sub-regions and structurally connected cortico-subcortical regions. TVC reduction was mainly driven by RRMS; while PMS exhibited a variable pattern of TVC abnormalities, characterized by reduced TVC between frontal/motor thalamic seeds and default-mode network areas and increased TVC vs controls/RRMS between posterior thalamic sub-regions and occipito-temporo-insular cortices, associated with severity of clinical disability. Compared with controls, both cognitively preserved and impaired patients showed reduced TVC between anterior thalamic sub-regions and frontal cortex. Cognitively impaired patients also showed increased TVC of the right postcentral thalamic sub-region with the cingulate cortex and postcentral gyrus vs both controls and cognitively preserved patients. Divergent patterns of TVC thalamic abnormalities were found between RRMS and PMS patients. TVC reduction in RRMS may represent the attempt of thalamic network to keep with stable connections. Conversely, increased TVC of posterior thalamic sub-regions characterized PMS and cognitively impaired MS, possibly reflecting maladaptive mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.