Abstract

This article provides a detailed report of our efforts to synthesize the dithiodiketopiperazine (DTP) natural products (-)-epicoccin G and (-)-rostratin A using a double C(sp3 )-H activation strategy. The strategy's viability was first established on a model system lacking the C8/C8' alcohols. Then, an efficient stereoselective route including an organocatalytic epoxidation was secured to access a key bis-triflate substrate. This bis-triflate served as the functional handles for the key transformation of the synthesis: a double C(sp3 )-H activation. The successful double activation opened access to a common intermediate for both natural products in high overall yield and on a multigram scale. After several unsuccessful attempts, this intermediate was efficiently converted to (-)-epicoccin G and to the more challenging (-)-rostratin A via suitable oxidation/reduction and protecting group sequences, and via a final sulfuration that occurred in good yield and high diastereoselectivity. These efforts culminated in the synthesis of (-)-epicoccin G and (-)-rostratin A in high overall yields (19.6 % over 14 steps and 12.7 % over 17 steps, respectively), with the latter being obtained on a 500 mg scale. Toxicity assessments of these natural products and several analogues (including the newly synthesized epicoccin K) in the leukemia cell line K562 confirmed the importance of the disulfide bridge for activity and identified dianhydrorostratin A as a 20x more potent analogue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.