Abstract

Recently, severe summertime ozone (O3) pollution has swept across most areas of China, especially the Beijing-Tianjin-Hebei (BTH) region and Fenwei Plain. By focusing on Beijing and Yuncheng, which are two typical cities in the BTH region and the Fenwei Plain, we intended to reveal the neglected fact that they had disparate emission features and atmospheric movements but suffered from similar high-O3 pollution levels. Field observations indicated that Yuncheng had lower volatile organic compound (VOC) and NOx concentrations but higher background O3 levels. The model simulation verified that both photochemical reactions and net O3 generation were stronger in Beijing. Ultimately, faster net O3 generation rates (8.4 ppbv/h) plus lower background O3 values in Beijing and lower net O3 generation rates (6.2 ppbv/h) plus higher background O3 values in Yuncheng caused both regions to reach similar O3 peak values in July 2020. However, different O3 control measures were appropriate for the two cities according to the different simulated O3-VOCs-NOx responses. Additionally, as surface O3 levels are greatly affected by the ongoing O3 production/depletion process that occurs in three dimensions, exploring the effects of spatially distributed O3 on surface O3 should be high on the agenda in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.