Abstract
Whole genome duplication (WGD), the doubling of the nuclear DNA of a species, contributes to biological innovation by creating genetic redundancy. One mode of WGD is allopolyploidization, wherein each genome from two ancestral species becomes a 'subgenome' of a polyploid descendant species. The evolutionary trajectory of a duplicated gene that arises from WGD is influenced both by natural selection that may favour redundant, new or partitioned functions, and by gene silencing (pseudogenization). Here, we explored how these two phenomena varied over time and within allopolyploid genomes in several allotetraploid clawed frog species (Xenopus). Our analysis demonstrates that, across these polyploid genomes, purifying selection was greatly relaxed compared to a diploid outgroup, was asymmetric between each subgenome, and that coding regions are shorter in the subgenome with more relaxed purifying selection. As well, we found that the rate of gene loss was higher in the subgenome under weaker purifying selection and that this rate has remained relatively consistent over time after WGD. Our findings provide perspective from recently evolved vertebrates on the evolutionary forces that likely shape allopolyploid genomes on other branches of the tree of life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.