Abstract

We have previously shown that proto-oncoprotein c-Jun is activated in ornithine decarboxylase (ODC)- and RAS-transformed mouse fibroblasts, and that the transformed morphology of these cells can be reversed by expressing the transactivation domain deletion mutant of c-Jun (TAM67). Here, we found that lysyl oxidase (Lox), encoding an extracellular matrix-modifying enzyme, is downregulated in a c-Jun-dependent manner in ODC-transformed fibroblasts (Odc cells). In addition to Lox, the Lox family members Lox-like 1 and 3 (Loxl1 and Loxl3) were found to be downregulated in Odc as well as in RAS-transformed fibroblasts (E4), whereas Lox-like 4 (Loxl4) was upregulated in Odc and downregulated in E4 cells compared to normal N1 fibroblasts. Tetracycline-regulatable LOX re-expression in Odc cells led to inhibition of cell growth and invasion in three-dimensional Matrigel in an activity-independent manner. On the contrary, LOX and especially LOXL2, LOXL3, and LOXL4 were found to be upregulated in several human melanoma cell lines, and LOX inhibitor B-aminopropionitrile inhibited the invasive growth of these cells particularly when co-cultured with fibroblasts in Matrigel. Knocking down the expression of LOX and especially LOXL2 in melanoma cells almost completely abrogated the invasive growth capability. Further, LOXL2 was significantly upregulated in clinical human primary melanomas compared to benign nevi, and high expression of LOXL2 in primary melanomas was associated with formation of metastases and shorter survival of patients. Thus, our studies reveal that inactive pro-LOX (together with Lox propeptide) functions as a tumor suppressor in ODC- and RAS-transformed murine fibroblasts by inhibiting cell growth and invasion, and active LOX and LOXL2 as tumor promoters in human melanoma cells by promoting their invasive growth.

Highlights

  • Proto-oncoprotein c-Jun is a transcription factor, a member of the AP-1 transcription factor family

  • We have previously shown that proto-oncoprotein c-Jun is activated in ornithine decarboxylase (ODC)- and RAS-transformed mouse fibroblasts, and that the transformed morphology of these cells can be reversed by expressing the transactivation domain deletion mutant of c-Jun (TAM67)

  • By using gene expression microarray analyses, we searched for genes that are both downregulated in ODCtransformed cells (Odc cells) compared to parental N1 fibroblasts as well as upregulated in ODC cDNA (Odc) cells transfected with a tetracycline-inducible TAM67 vector (Odc-pLRTTAM67) after induction of TAM67 expression

Read more

Summary

Introduction

Proto-oncoprotein c-Jun is a transcription factor, a member of the AP-1 (activation protein-1) transcription factor family. It can dimerize through its leucine zipper motif with other members of the AP-1 family (reviewed in [1]). C-Jun expression and activity have been found to be elevated in cell lines transformed by many different oncoproteins, such as receptor tyrosine kinases, Src, Ras, Raf, Fos, and Myc [12, 13], and in human cancers, such as pancreatic cancer [14], breast cancer [15], sarcomas [16], glioblastoma [17], and melanoma [18, 19]. Similar results were obtained with RAS-transformed mouse fibroblasts (E4 cells) [24]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call