Abstract
Knowledge on relationship and determinants of water and carbon dioxide (CO2) exchange is crucial to land managers and policy makers especially for the desertified land restoration. However, there remains highly uncertain in terms of water use and carbon sequestration for artificial plantation in desert. Here, continuous water and carbon fluxes were measured using eddy covariance (EC) in conjunction with hydrometeorological measurements over an artificial C4 shrub, Haloxylon ammodendron (C. A. Mey.) Bunge, from July 2020 to 2021 in Tengger Desert, China. Throughout 2021, evapotranspiration (ET) was 189.5 mm, of which 85% (150 mm) occurred during growing season, that was comparable with the summation of precipitation (132.2 mm), dew (33.5 mm) and potential other sources (e.g. deep subsoil water). This ecosystem was a strong carbon sink with net ecosystem production (NEP) up to 446.4 g C m−2 yr−1, much higher than surrounding sites. Gross primary production (GPP, 598.7 g C m−2 yr−1) in this shrubland was comparable with that of other shrublands, whereas ecosystem respiration (Re, 152.3 g C m−2 yr−1) was lower. Random Forest showed that environmental factors can explain 71.56% and 80.07% variation of GPP and ET, respectively. Interestingly, environmental factors have divergent effect on water and carbon exchange, i.e., soil hydrothermic factors (soil moisture content and soil temperature) determine the magnitude and seasonal pattern of ET and Re, while aerodynamics factors (net radiation, atmospheric temperature and wind speed) determine GPP and NEP. As such, divergent response of abiotic factors resulted in the decoupling of water and carbon exchange. Our results suggest that H. ammodendron is a suitable species for large-scale afforestation in dryland given its low water use but high carbon sequestration. Therefore, we infer that artificial planting H. ammodendron in dryland could provide an opportunity for climate change mitigation, and the long-term time series data is needed to confirm its sustainable role of carbon sequestration in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.