Abstract
Abstract. Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA′) to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA′ predicted ∼ 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA′ simulated 37 % higher NPP than CABLE. On the other hand, τE, which was a function of the baseline carbon residence time (τ′E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA′. This difference in τE was mainly caused by longer τ′E of woody biomass (23 vs. 14 years in CLM-CASA′), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ′E. Overall, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.