Abstract

Light driven primary production by plants is the main source of biomass in terrestrial ecosystems. But also in subsurface habitats like aquifers, life is fueled largely by this plant-derived biomass. Here, we investigate the degradation of plant-derived polysaccharides in a groundwater microbiome to identify the microbial key players involved, and compare them to those from soil of the groundwater recharge area. We quantified the activities of enzymes degrading the abundant plant polymers starch, cellulose and hemicellulose in oligotrophic groundwater samples, despite the low cell numbers present. Normalized to 16S rRNA gene copy numbers, these activities were only one order of magnitude lower than in soil. Stimulation of the groundwater microbiome with either starch or cellulose and hemicellulose led to changes of the enzymatic activity ratios, indicating autochthonous production of enzymes in response to the plant polymers. Furthermore, DNA stable isotope probing with 13C labelled plant polymers allowed us to identify microbes involved in the degradation of these compounds. In (hemi)cellulose microcosms, Bacteroidia and Candidatus Parcubacteria were active, while the active community in starch microcosms mostly comprised Candidatus Saccharibacteria, Cytophagia, and Actinobacteria. Not a single one of the active OTUs was also found to be labelled in soil microcosms. This indicates that the degradation of plant-derived polysaccharides in groundwater is driven by organisms completely distinct from those active in soil. The involvement of members of the candidate phyla Cand. Parcubacteria and Cand. Saccharibacteria, organisms known to be abundant in groundwater, in plant-derived organic matter degradation might strongly impact subsurface carbon cycling.

Highlights

  • In the subsurface, the light-driven primary production dominating surface environments is missing, leading to oligotrophic conditions

  • We explored the microbial metabolic potential for plant polysaccharide degradation in an oxic limestone aquifer of the Hainich Critical Zone Exploratory (CZE), Germany, where the flow of pristine groundwater can be followed from its origin through the subsurface downhill [8]

  • Groundwater was obtained from well H41 accessing an oxic aquifer assemblage, and is characterized by average chemical values of 5.0 ± 1.5 mg L-1 dissolved oxygen (DO), pH 7.2, < 0.1 mg L-1 ammonium, 1.9 ± 1.5 mg L-1 dissolved organic carbon (DOC), and 70.8 ± 12.7 mg L-1 total inorganic carbon (TIC) [26,27,28]

Read more

Summary

Introduction

The light-driven primary production dominating surface environments is missing, leading to oligotrophic conditions. Plant polysaccharide degradation in groundwater and soil. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call