Abstract
Ecosystem water use efficiency (WUE) is an indicator of carbon-water interactions and is defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). However, it is currently unclear how WUE responds to atmospheric and soil drought events in terrestrial ecosystems with different dryness conditions. Additionally, the contributions of GPP and ET to the WUE response remain poorly understood. Based on measurements from 26 flux tower sites distributed worldwide, the binning method and random forest model were employed to separate the sensitivities of daily ecosystem WUE, GPP, and ET to vapor pressure deficit (VPD) and soil water content (SWC) under different dryness conditions (dryness index = potential evapotranspiration/precipitation, DI). Results showed that the sensitivity of WUE to VPD was negative at humid sites (DI < 1), while the sensitivity of WUE to SWC was positive at arid sites (DI > 2). Furthermore, the contribution of GPP to VPD-induced WUE variability was 63 % at humid sites, and the contribution of ET to SWC-induced WUE variability was 68 % when SWC was less than the 60th percentile at arid sites. Consequently, one increasing VPD-induced decrease in GPP was generally linked to a decrease in WUE at humid sites, and one drying soil moisture-caused decrease in ET was linked to a WUE increase under low SWC conditions at arid sites. Finally, VPD had a stronger effect on WUE than SWC when VPD was less than the 90th percentile or SWC was greater than the 50th percentile. Our findings underscore the importance of considering ecosystem dryness when investigating the impacts of VPD and SWC on ecosystem carbon-water coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.