Abstract
Divergent host preference (i.e. host fidelity) plays a significant role in the speciation process in phytophagous insects. However, how and to what extent this divergence reduces gene flow between populations has rarely been measured. Here, we estimated the intensity of assortative mating caused solely by host fidelity in two host races of the phytophagous ladybird beetle Henosepilachna diekei, specialized on Mikania micrantha (Asteraceae) and Leucas lavandulifolia (Lamiaceae) in West Java, Indonesia. These host races mated randomly in the absence of host plants under laboratory conditions, but demonstrated nearly complete assortative mating in field cages with the two host plants, by spending almost all of their time on their respective host plants. The frequency of assortative mating in the field cages was not affected drastically by host plant patch structure. These results suggest that fidelity to the different host plants yields directly almost complete reproductive isolation between the host races by limiting the habitat on the respective host plant. In addition, the high host fidelity also ensures female oviposition on the original host plant. As larvae cannot survive on non-host plants, a positive association between female oviposition preference and larval performance on the host plant on which the beetles are specialized will further facilitate the evolution of host fidelity. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110, 606–614.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.