Abstract

BackgroundThe rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. indica cv. Tetep, which conferred broad-spectrum resistance against Magnaporthe oryzae. Pi54 allelic variants have been identified in not only domesticates but also wild rice species, but the majority of japonica and some indica cultivars lost the function.ResultsWe here found that Pi54 (Os11g0639100) and its homolog Os11g0640600 (named as #11) were closely located on a 25 kbp region in japonica cv. Sasanishiki compared to a 99 kbp region in japonica cv. Nipponbare. Sasanishiki lost at least six genes containing one other R-gene cluster (Os11g0639600, Os11g0640000, and Os11g0640300). Eight AA-genome species including five wild rice species were classified into either Nipponbare or Sasanishiki type. The BB-genome wild rice species O. punctata was Sasanishiki type. The FF-genome wild rice species O. brachyantha (the basal lineage of Oryza) was neither, because Pi54 was absent and the orientation of the R-gene cluster was reversed in comparison with Nipponbare-type species. The phylogenetic analysis showed that #11gene of O. brachyantha was on the root of both Pi54 and #11 alleles. All Nipponbare-type Pi54 alleles were specifically disrupted by 143 and 37/44 bp insertions compared to Tetep and Sasanishiki type. In addition, Pi54 of japonica cv. Sasanishiki lost nucleotide-binding site and leucine-rich repeat (NBS–LRR) domains owing to additional mutations.ConclusionsThese results suggest that Pi54 might be derived from a tandem duplication of the ancestor #11 gene in progenitor FF-genome species. Two divergent structures of Pi54 locus caused by a mobile unit containing the nearby R-gene cluster could be developed before domestication. This study provides a potential genetic resource of rice breeding for blast resistance in modern cultivars sustainability.

Highlights

  • The rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. indica cv

  • The results clearly indicated that Nipponbare and Hitomebore harbored the insertion but no such insertion was found in Sasanishiki (Additional file 1: Figure S1)

  • We found that #11 gene of O. brachyantha was on the root of both Pi54 alleles and #11 alleles, while #11 of O. punctata was relatively close to Sasanishiki type species

Read more

Summary

Introduction

The rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. Tetep, which conferred broad-spectrum resistance against Magnaporthe oryzae. Pi54 allelic variants have been identified in domesticates and wild rice species, but the majority of japonica and some indica cultivars lost the function. Oryza sativa, including two major subspecies japonica and indica, is the staple food for half the world and of pivotal importance in worldwide food production and security (Chang 1976; Lu 1999; Ammiraju et al 2006). Plant diseases are threatening the crops productions worldwide. In recent rice-breeding programs, pyramiding of R-genes has been an effective strategy for achieving durable resistance in commercial crops (Ashkani et al 2016; Xiao et al 2017).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call