Abstract

BackgroundThe bacterial flagellum is the most important organelle of motility in bacteria and plays a key role in many bacterial lifestyles, including virulence. The flagellum also provides a paradigm of how hierarchical gene regulation, intricate protein-protein interactions and controlled protein secretion can result in the assembly of a complex multi-protein structure tightly orchestrated in time and space. As if to stress its importance, plants and animals produce receptors specifically dedicated to the recognition of flagella. Aside from motility, the flagellum also moonlights as an adhesion and has been adapted by humans as a tool for peptide display. Flagellar sequence variation constitutes a marker with widespread potential uses for studies of population genetics and phylogeny of bacterial species.ResultsWe sequenced the complete flagellin gene (flaA) in 18 different species and subspecies of Aeromonas. Sequences ranged in size from 870 (A. allosaccharophila) to 921 nucleotides (A. popoffii). The multiple alignment displayed 924 sites, 66 of which presented alignment gaps. The phylogenetic tree revealed the existence of two groups of species exhibiting different FlaA flagellins (FlaA1 and FlaA2). Maximum likelihood models of codon substitution were used to analyze flaA sequences. Likelihood ratio tests suggested a low variation in selective pressure among lineages, with an ω ratio of less than 1 indicating the presence of purifying selection in almost all cases. Only one site under potential diversifying selection was identified (isoleucine in position 179). However, 17 amino acid positions were inferred as sites that are likely to be under positive selection using the branch-site model. Ancestral reconstruction revealed that these 17 amino acids were among the amino acid changes detected in the ancestral sequence.ConclusionThe models applied to our set of sequences allowed us to determine the possible evolutionary pathway followed by the flaA gene in Aeromonas, suggesting that this gene have probably been evolving independently in the two groups of Aeromonas species since the divergence of a distant common ancestor after one or several episodes of positive selection.ReviewersThis article was reviewed by Alexey Kondrashov, John Logsdon and Olivier Tenaillon (nominated by Laurence D Hurst).

Highlights

  • The bacterial flagellum is the most important organelle of motility in bacteria and plays a key role in many bacterial lifestyles, including virulence

  • The results of the BLASTN search in the GenBank database verified that all sequences obtained were of the Aeromonas flagellin gene and showed high homology with the flaA gene

  • We examined the Bayes Empirical Bayes (BEB) posterior probabilities to infer the sites that are likely to be under positive selection

Read more

Summary

Introduction

The bacterial flagellum is the most important organelle of motility in bacteria and plays a key role in many bacterial lifestyles, including virulence. The genus Aeromonas belonging to the Gammaproteobacteria includes a group of 21 Gram- negative bacterial species that can be isolated worldwide from a variety of environments. In their report of March 2006, the Office of Water of the Environmental Protection Agency of the USA (EPA) included some species of Aeromonas into a group of potential waterborne pathogens. Aeromonads are efficient colonizers of surfaces and are an important constituent of bacterial biofilms in both water distribution systems and food processing environments. Their polar flagellum contributes to biofilm formation and host colonization, as in the case of other bacterial genera such as Campylobacter and Pseudomonas [2]. In recent studies the role of the polar flagellum of Aeromonas in enterocyte adherence has been found to be similar to those of other seafood pathogens such as Vibrio [3]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.