Abstract
Populations with phenotypic polymorphism in discrete characters may be good models for investigating genome evolution and speciation. Sphagnum magellanicum Brid. is found throughout the northern hemisphere, and despite considerable variation in morphological characters, it is considered one of the least taxonomically controversial peatmoss species. We have observed two main morphs of the species associated with different microhabitats. Here we investigated the genomic and environmental basis of this intraspecific morphological variation. We conducted transplant and common garden experiments to test whether the two morphs are genetically differentiated. We then used RAD-sequencing to quantify the genomic divergence between the morphs and approximate Bayesian computation (ABC) to infer the most likely demographic scenario explaining the genome-wide differentiation of the two morphs. We found that genomic differentiation between the two morphs is unexpectedly high and that several of the differentiated morphological characters have a genetic basis. Using simulation approaches, we found support for a scenario of ancient divergence followed by recent secondary contact. We show that the two morphs represent the two main genetic clusters previously found worldwide. Our results demonstrate that relatively minor morphological differentiation in a presumed phenotypically plastic peatmoss may be associated with massive divergence across the genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.