Abstract

The multiple specialized cell types of the hematopoietic system originate from differentiation of hematopoietic stem cells and progenitors (HSPC), which can generate both lymphoid and myeloid lineages. The myeloid lineage is preferentially maintained during ageing, but the mechanisms that contribute to this process are incompletely understood. Here, we studied the roles of Wnt5a and Wnt5b, ligands that have previously been linked to hematopoietic stem cell ageing and that are abundantly expressed by both hematopoietic progenitors and bone-marrow derived niche cells. Whereas Wnt5a had no major effects on primitive cell differentiation, Wnt5b had profound and divergent effects on cytokine-induced myeloid differentiation. Remarkably, while IL-3-mediated myeloid differentiation was largely repressed by Wnt5b, GM-CSF-induced myeloid differentiation was augmented. Furthermore, in the presence of IL-3, Wnt5b enhanced HSPC self-renewal, whereas in the presence of GM-CSF, Wnt5b accelerated differentiation, leading to progenitor cell exhaustion. Our results highlight discrepancies between IL-3 and GM-CSF, and reveal novel effects of Wnt5b on the hematopoietic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.