Abstract

Recently, we identified several missense mutations of the connexin gene GJB3 encoding connexin 31 (Cx31) in erythrokeratodermia variabilis (EKV), an autosomal dominant skin disorder. These mutations include G12D, which replaces a conserved glycine residue in the amino-terminus of Cx31 and is associated with a severe EKV phenotype. In contrast, the biologic relevance of the GJB3 sequence variant R32W located in the first transmembrane domain of Cx31 is disputed. To examine the effects of these sequence variants on Cx31 biogenesis and gap junction activity we expressed wild type and mutant Cx31-Flag constructs in HeLa cells. Using immunostaining, all expression variants were detected in the cytoplasm and in a punctate pattern at the cell surface, indicating that G12D and R32W did not interfere with either protein synthesis or transport to the cell membrane. Similarly, oligomerization into hemichannels appeared not impaired when expressing either Cx31 mutant as assessed by size exclusion chromatography, immunoblotting and immunostaining. However, dye transfer experiments and monitoring of intracellular calcium levels in response to serum stimulation revealed that G12D-Cx31 did not form functional gap junction channels, probably due to incorrect assembly or altered properties of Cx31 channels. In contrast, intercellular coupling between cells expressing R32W-Cx31 was comparable to that of wtCx31, suggesting that R32W is a functionally inconsequential polymorphism of Cx31.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call