Abstract
Particle-mediated epidermal delivery (PMED) of allergen genes efficiently prevents systemic sensitization and suppresses specific immunoglobulin E synthesis. We investigated in a mouse model of allergic airway disease the effect of PMED on the elicitation of local inflammatory reactions in the lung. BALB/c mice were biolistically transfected with plasmids encoding beta-galactosidase (betaGal) as model allergen under control of the DC-targeting fascin promoter and the ubiquitously active cytomegalovirus promoter, respectively. Mice were challenged intranasally with betaGal-protein with or without intermediate sensitization with betaGal adsorbed to aluminiumhydroxide. Subsequently, local cytokine production and recruitment of IFN-gamma-producing CD8(+) effector T cells into the airways were determined, and inflammatory parameters such as cellular infiltration in the bronchoalveolar lavage (BAL) and airway hyperresponsiveness (AHR) were measured. PMED of betaGal-encoding plasmids before sensitization significantly reduced frequencies of eosinophils in the BAL and shifted the local T helper (Th) cell response from a distinct Th2 response toward a Th1-biased response. However, AHR triggered by allergen challenge via the airways was not alleviated in vaccinated mice. Most important, we show that PMED using betaGal-encoding DNA without subsequent sensitization recruited Tc1 cells into the lung and caused a Th1-prone local immune response after subsequent intranasal provocation, accompanied by neutrophilic infiltration into the airways and elicitation of AHR. We conclude that robust Th1/Tc1 immune responses, although highly effective in the counter-regulation of local Th2-mediated pathology, might as well trigger local inflammatory reactions in the lung and provoke the induction of AHR in the mouse model of allergic airway disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.