Abstract
Soil nutrients are essentially regulated by land management practices via modulating biotic element input and metabolism. The Three Gorges Reservoir Area in China was dominated by a farming landscape, but land management has become diversified over recent decades. How these restorative management practices may have affected soil nutrients is not completely understood. In this study, a space-time substitution approach was applied to evaluate soil nutrients and their stoichiometric changes in response to post-farming land management practices. Soil samples (0–10 cm, 10–20 cm, and 20–40 cm) were collected from present-day croplands, cypress plantations, eucalyptus plantations, abandoned croplands, and citrus plantations. Soil organic matter, soil organic carbon, total nitrogen, alkaline hydrolyzed nitrogen, total phosphorus, and available phosphorus were determined. The results showed that soil organic matter and total nitrogen in abandoned croplands, cypress plantations, eucalyptus plantations and citrus plantations were increased by 186% and 190%, 184% and 107%, 45% and 33%, 45% and 54%, respectively, in comparison with those of present-day croplands. Soil nutrients except for total phosphorus decreased with soil depth by exclusion of tillage mixing. Comprehensive soil nutrient index showed that abandoned croplands (0.90) and cypress plantations (0.72) exhibited favorable nutrient recovery capacity. Soil C:P and N:P ratios increased in abandoned croplands, cypress plantations, and eucalyptus plantations. Phosphorus may become a limiting factor for plant growth with prolonged recovery in abandoned croplands, cypress plantations, and eucalyptus plantations, while soil organic matter and total nitrogen deficiencies were exacerbated in citrus plantations and present-day croplands. Therefore, cropland abandonment and reforestation (particularly cypress trees plantation) are recommended options for restoring soil nutrients in the Three Gorges Reservoir Area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Soil and Water Conservation Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.