Abstract

Novel-substituted pyrrolidine derivatives are widely used in drugs and bioactive molecules. The efficient synthesis of these valuable skeletons, especially enantiopure derivatives, is still recognized as a key bottleneck to overcome in chemical synthesis. Herein, we report a highly efficient catalyst-tuned regio- and enantioselective hydroalkylation reaction for the divergent synthesis of chiral C2- and C3-alkylated pyrrolidines through desymmetrization of the readily available 3-pyrrolines. The catalytic system consists of CoBr2 with a modified bisoxazoline (BOX) ligand, which can achieve the asymmetric C(sp3)-C(sp3) coupling via the distal stereocontrol, providing a series of C3-alkylated pyrrolidines in high efficiency. Moreover, the nickel catalytic system allows the enantioselective hydroalkylation to synthesize the C2-alkylated pyrrolidines through the tandem alkene isomerization/hydroalkylation reaction. This divergent method uses readily available catalysts, chiral BOX ligands, and reagents, delivering enantioenriched 2-/3-alkyl substituted pyrrolidines with excellent regio- and enantioselectivity (up to 97% ee). We also demonstrate the compatibility of this transformation with complex substrates derived from a series of drugs and bioactive molecules in good efficiency, which offers a distinct entry to more functionalized chiral N-heterocycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.