Abstract

Abstract Patterns in functional trait variation associated with the ecological strategies of lianas and trees in subtropical montane forests remain poorly understood due to lack of trait comparisons. Here, we filled this gap by investigating trait divergence between lianas and trees with different leaf habits for 13 traits of 33 species (7 deciduous and 4 evergreen liana species, and 10 deciduous and 12 evergreen tree species) in a subtropical montane forest in southwestern China. We found that lianas had significantly larger stem xylem vessel diameter, higher theoretical hydraulic conductivity, specific leaf area, leaf nitrogen, and phosphorus concentrations, but lower leaf dry-matter content and N/P ratio than sympatric trees, indicating that lianas employ an acquisitive ecological strategy, with a more efficient stem hydraulic system and more productive leaves. In contrast to trees, lianas exhibited a larger variation in vessel diameter, with a few wide and many narrow vessels in the xylem, indicating a greater vessel dimorphism. Growth form explained 48.7% of the total trait variation, while leaf habit only explained 3.8% of trait variation, without significant interaction between growth form and leaf habit. In addition, significant stem–leaf trait relationships were only found in trees, but not in lianas, indicating decoupling of stem hydraulic function and leaf traits in subtropical lianas. These results suggest that subtropical montane lianas and trees differ strikingly in stem and leaf functional traits. Further studies are warranted to strengthen our understanding of the mechanisms underlying the strong divergence in ecological strategies between lianas and trees in subtropical forest ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call